Friday, April 28, 2017

The core of the Sun extends from the center to about 20–25% of the solar radius.[66] It has a density of up to 150 g/cm3[67][68] (about 150 times the density of water) and a temperature of close to 15.7 million kelvins (K).[68] By contrast, the Sun's surface temperature is approximately 5,800 K. Recent analysis of SOHO mission data favors a faster rotation rate in the core than in the radiative zone above.[66] Through most of the Sun's life, energy has been produced by nuclear fusion in the core region through a series of steps called the p–p (proton–proton) chain; this process converts hydrogen into helium.[69] Only 0.8% of the energy generated in the Sun comes from the CNO cycle, though this proportion is expected to increase as the Sun becomes older.[70] The core is the only region in the Sun that produces an appreciable amount of thermal energy through fusion; 99% of the power is generated within 24% of the Sun's radius, and by 30% of the radius, fusion has stopped nearly entirely. The remainder of the Sun is heated by this energy as it is transferred outwards through many successive layers, finally to the solar photosphere where it escapes into space as sunlight or the kinetic energy of particles.[51][71] The proton–proton chain occurs around 9.2×1037 times each second in the core, converting about 3.7×1038 protons into alpha particles (helium nuclei) every second (out of a total of ~8.9×1056 free protons in the Sun), or about 6.2×1011 kg/s.[51] Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of the fused mass as energy,[72] so the Sun releases energy at the mass–energy conversion rate of 4.26 million metric tons per second (which requires 600 metric megatons of hydrogen [73]), for 384.6 yottawatts (3.846×1026 W),[1] or 9.192×1010 megatons of TNT per second. Theoretical models of the Sun's interior indicate a power density of approximately 276.5 W/m3,[74] a value that more nearly approximates that of reptile metabolism or a compost pile[75] than of a thermonuclear bomb.[e] The fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the perturbation; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate.[


No comments: