Sunday, May 21, 2017

Free flight began as an effort to become less dependent on the human factor and more dependent on the growing technology of its day. As airlines expanded their fleets in the 1960s, they increased the need for air traffic management (ATM).[citation needed] ATM created instrument flight rules (commonly known as "IFR") to manage the growing numbers of aircraft. This helped control air traffic, but required a significant amount of time, effort, and resources to maintain IFR flight.[citation needed] In 1968, the Federal Aviation Administration issued the High Density Airport Rule to reduce the amount of aircraft in a given airport.[citation needed] Twenty years earlier Crocker Snow used television cameras to locate his position when flying an aircraft.[citation needed] He sent up signals to the aircraft so they could get a third person perspective of the aircraft’s surrounding. This idea worked but was too costly and was impractical. In the 1960s transponders removed the need to use television cameras. Other problems that occurred in the air traffic industry were the OPEC fuel crises and the Professional Air Traffic Controllers Organization (PATCO) strike of 1982 resulting the firing of thousands of controllers by President Ronald Reagan. This showed how vulnerable air transportation was to economic forces.[citation needed] The key components of free flight were identified in 1971 by United Airlines systems manager William Cotton, although the technology to implement it was not available for another two decades.[1] In the 1970's the GPS satellite navigation system was deployed by the US Department of Defense and the aviation industry saw the opportunity to use GPS for potentially more efficient air traffic management capabilities through an increased use of this capability coupled with automation enabled by it.[citation needed] In 1991 the International Civil Aviation Organization created the Future Air Navigation System Panel. The panel produced descriptions of satellite-based technology applications and their use in air traffic management. A larger role emerged for "user-defined trajectory" that became known as "free flight" by the mid-1990s. The first hearings on implementing free flight were held in August 1994 by Representative Collin Peterson (D-Minnesota), chair of the House subcommittee with investigative jurisdiction over the FAA.[1] In 1995 David Hinson, the FAA administrator, organized a task force to draw up detailed plans to implement free flight. The report, issued in October that year called for three phases;[1][2] phase I ended at the end of 2002, the others have not been started. A method and system for an automated tool to enable en route traffic controllers to optimize aircraft routes dynamically was patented by the NASA in 2001.[3] True free flight applications exist only on a small scale in selected airspace operations where only the most well equipped aircraft operate, such as at high altitude by commercial airliners.[citation needed] There are many versions of free flight being conceived for the Next Generation Air Transportation System (NGATS). The free flight vision is expected to slowly emerge over the next 20–30 years as NGATS emerges from billions of dollars of development, testing, careful transition planning, training, and deployment of ground-based and airborne systems by all types of aircraft. Key elements of NGATS include the automatic dependent surveillance-broadcast (ADS-B) and what can be expected to be an ever-evolving, net-centric information application called the System Wide Information Management System or "SWIM".


No comments: